두 종류의 부등호 기호 ‘<’와 ‘>’가 k개 나열된 순서열 A가 있다. 우리는 이 부등호 기호 앞뒤에 서로 다른 한 자릿수 숫자를 넣어서 모든 부등호 관계를 만족시키려고 한다. 예를 들어, 제시된 부등호 순서열 A가 다음과 같다고 하자.
A => < < < > < < > < >
부등호 기호 앞뒤에 넣을 수 있는 숫자는 0부터 9까지의 정수이며 선택된 숫자는 모두 달라야 한다. 아래는 부등호 순서열 A를 만족시키는 한 예이다.
3 < 4 < 5 < 6 > 1 < 2 < 8 > 7 < 9 > 0
이 상황에서 부등호 기호를 제거한 뒤, 숫자를 모두 붙이면 하나의 수를 만들 수 있는데 이 수를 주어진 부등호 관계를 만족시키는 정수라고 한다. 그런데 주어진 부등호 관계를 만족하는 정수는 하나 이상 존재한다. 예를 들어 3456128790 뿐만 아니라 5689023174도 아래와 같이 부등호 관계 A를 만족시킨다.
5 < 6 < 8 < 9 > 0 < 2 < 3 > 1 < 7 > 4
여러분은 제시된 k개의 부등호 순서를 만족하는 (k+1)자리의 정수 중에서 최댓값과 최솟값을 찾아야 한다. 앞서 설명한 대로 각 부등호의 앞뒤에 들어가는 숫자는 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }중에서 선택해야 하며 선택된 숫자는 모두 달라야 한다.
n = int(input())
op = input().split()
c = [False]*10
mx, mn = "", ""
def possible(i, j, k):
if k == '<':
return i < j
if k == '>':
return i > j
return True
def solve(cnt, s):
global mx, mn
if cnt == n+1:
if not len(mn):
mn = s
else:
mx = s
return
for i in range(10):
if not c[i]:
if cnt == 0 or possible(s[-1], str(i), op[cnt-1]):
c[i] = True
solve(cnt+1, s+str(i))
c[i] = False
solve(0, "")
print("%s\n%s" % (mx, mn))